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Tomography of the quantum state of photons entangled in high dimensions
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Systems entangled in high dimensions have recently been proposed as important tools for various quantum
information protocols, such as multibit quantum key distribution and loophole-free tests of nonlocality. It is
therefore important to have precise knowledge of the nature of such entangled quantum states. We tomographically
reconstruct the quantum state of the two photons produced by parametric downconversion that are entangled
in a d-dimensional orbital angular momentum basis. We determine exactly the density matrix of the entangled
two-qudit state with d ranging from 2 to 8. The recording of higher-dimensional states is limited only by the
number of data points required and therefore the length of time needed to complete the measurements. We find
all the measured states to have fidelities and linear entropies that satisfy the criteria required for a violation of
the appropriate high-dimensional Bell inequality. Our results therefore precisely characterize the nature of the
entanglement, thus establishing the suitability of such states for applications in quantum information science.
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I. INTRODUCTION

Tomographic reconstruction techniques have found ap-
plications in a wide range of disciplines. The concept of
tomography is that properties of an unknown system that
cannot be measured directly are established from a sequence
of measurements on different parts of the system. Knowledge
about the different measurements and their outcomes are
combined to give a best fit to the system that would produce
the outcomes of the measurements. An example of tomography
in image science is the reconstruction of a three-dimensional
object or scene from a number of two-dimensional projections.

Quantum state reconstruction or quantum tomography is the
process in which precise knowledge of an unknown quantum
state is established [1]. As any measurement on a quantum
system will alter the state, the tomographic process requires
measurements to be performed on identical copies of the initial
state. After a set of measurements is performed, which must
form a complete basis in the chosen Hilbert space, the density
matrix or quantum state can be uniquely recovered.

The process of reconstruction of a quantum state was
proposed by Fano in 1957 [1,2]. Since then, many experiments
have been reported, and quantum tomography is an established
field of research [3–11]. Recently, quantum tomography using
compressive sensing was reported [12]. In that work, it
was shown that the number of required measurements to
reconstruct the density matrix can be made to scale favorably
with the dimension of the quantum system. For specific cases
where the density matrix is sparse in a particular basis, there
is a significant reduction in the number of measurements
required.

We use quantum tomography to reconstruct the state of two
entangled photons. Entanglement gives rise to nonclassical
correlations of variables in quantum systems; see Ref. [13]
for a comprehensive review. These correlations are central to
EPR’s paradox [14] and tests of nonlocality through violations
of Bell inequalities [15,16]. Due in part to its importance
for quantum cryptography [17], entanglement has become
an important field of study. High-dimensional entanglement

has been reported up to dimension d = 12 [18]. The state
of hyperentangled photons, which are entangled in several
degrees of freedom, has been characterized via quantum state
tomography [19]. Tomography of entangled states up to dimen-
sion d = 3 has also been reported [7]. Higher-dimensionally
entangled states have not yet been characterized due to the
inherent time demands for the large sets of measurements
required.

In this work we determine the precise quantum state of high-
dimensionally entangled photon pairs generated by parametric
down-conversion. In this process, orbital angular momentum
(OAM) is conserved, resulting in two photons with equal but
opposite OAMs and entangled in the OAM basis [20–24].
We choose to measure in the OAM basis as the states in this
basis are discrete, although the Hilbert space they define is
infinite dimensional. It is therefore a simple process to restrict
the specific size of the state space while retaining the option
of high dimensionality. We see this as an important step in
the characterization of high-dimensionally entangled systems,
which have recently been proposed as a tool that could be used
for loophole-free tests of nonlocality [25].

II. THEORY

The density matrix of a pure quantum state is formed by
the outer product of the state vector with itself,

ρ = |ψ〉〈ψ |, (1)

where the state can be represented in a complete basis of
vectors |u〉 as

|ψ〉 =
∑

u

au|u〉. (2)

However, constructing the density matrix from |ψ〉 requires
knowledge of the complex coefficients au, which in general
cannot be measured directly. This expression also precludes
a mixed state, which cannot be expressed with a state vector.
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Thus we must use a different approach, such as tomographic
reconstruction.

Quantum state tomography consists of reconstructing a
density matrix ρ by making multiple measurements on
identical copies of the relevant quantum state. The set of
measured probabilities pi for known observables Ai is given
by

pi = Tr[ρAi]. (3)

Here Ai is a Hermitian operator with real eigenvalues, which
in this case is a projection operator composed of the mode that
we want to detect. The density matrix is then constructed from
a complete set of such measurements. The density matrix must
have nonnegative eigenvalues and a trace equal to unity in order
to describe a real physical system. It is possible to formulate the
calculation of ρ as an inverse problem, where one must invert
the matrix A whose rows are composed of the detector states
Ai in the basis of the Laguerre-Gauss modes. However, the
calculation of ρ using matrix inversion does not always ensure
the above conditions due to experimental noise, and different
approaches are required to reconstruct physically real quantum
states. The method that we use in this paper consists of using
linear combinations of generalized Gell-Mann matrices, which
form a complete basis set in which to build matrices for any
given dimension [6].

In the case of a qubit, a single photon in a two-dimensional
state space, the density matrix can be represented as a linear
combination of the Pauli matrices [5]. Similarly, the state of
a single qudit, which exists in a d-dimensional state space,
can be expressed as a linear combination of the generalized
Gell-Mann matrices,

ρ = 1

d
τ0 +

d2−1∑
n=1

bnτn. (4)

Here τ0 is the d-dimensional identity matrix and τn are
the generalized Gell-Mann matrices in d dimensions, with
corresponding complex coefficients bn.

This state can also be represented as a superposition of the
OAM states of light as

|�〉 =
[d/2]∑

�=−[d/2]

a�|�〉, (5)

where [x] is the integer part of x. We consider only states with
mode index p = 0. The squares of the coefficients must sum
to unity for normalization, and a�=0 must equal zero for even
d. Here, each eigenstate |�〉 denotes a state of light with OAM
equal to �h̄.

The density matrix of the OAM state of light of Eq. (5)
can then be represented by linear combinations of the high-
dimensional Gell-Mann matrices as in Eq. (4). The coefficients
of these matrices are determined by a set of measurements
that must be tomographically complete. One such simple set
consists of measurements of the pure OAM states,

|�〉� = |�〉, (6)

and superpositions of just two of these states,

|�〉α,�1,�2 = 1√
2

(|�1〉 + eiα|�2〉), (7)

where �,�1,�2 = −[d/2], . . . ,[d/2] and �1 < �2.
In this work, we reconstruct the two-qudit quantum state

produced by parametric down-conversion. This process pro-
duces two photons with equal and opposite OAMs that are
entangled in the OAM basis. The two-photon state is then the
tensor product of two single-qudit states from Eq. (5), with
opposite OAMs,

|�〉 =
[d/2]∑

�=−[d/2]

c�|�〉s ⊗ |−�〉i . (8)

Here, |c�|2 gives the probability of finding a signal photon in
state |�〉s and idler photon in state |−�〉i . The range of � over
which |c�|2 is appreciable is known as the spiral bandwidth,
and detailed analysis of the properties that affect it can be
found in Refs. [26–28].

In analogy to using Eq. (4) to represent the single-qudit
state of Eq. (5), the density matrix of a two-photon qudit state
[Eq. (8)] can be expressed as

ρ =
∑
m,n

bm,nτm ⊗ τn, (9)

where b0,0 = 1/d2 for normalization.
Since we have two qudits, each in a d-dimensional space,

we have a state vector of length d2, resulting in a d2 × d2

density matrix. In order to determine the density matrix,
we require a number of measurements at least equal to the
number of elements in the matrix, which is d4 [5,7]. These
measurements are required to be tomographically complete
such that they span the entire state space. A sufficient set would
be given by the pure states of Eq. (6) and two superposition
states (α = 0, π

2 ) from Eq. (7) for each combination of �1 < �2

in each of the signal and idler modes of the experiment. For
a more accurate reconstruction of the density matrix, one can
choose an over-complete set of measurements, thus providing
more information with which to reconstruct the state [7].

III. EXPERIMENT

We use parametric down-conversion to generate photon
pairs entangled in the transverse degree of freedom. We use a
3-mm-long type I BBO crystal, pumped by a frequency-tripled
Nd:YAG laser at 355 nm with an average power of 150 mW
and a beam waist of approximately 1 mm (see Fig. 1). In
each of the signal and idler arms of the experiment, spatial
light modulators (SLMs) together with single-mode fibers act
as mode filters which allow us to measure the spatial states
of light. In our case, to register a count at the avalanche
photodetectors (APDs), light must be converted into the
fundamental mode so that it will propagate through the single-
mode fibers. This mode conversion is performed by the SLMs,
which display computer-generated holograms that convert an
incident mode of light depending on the particular phase profile
that the SLM represents. The coincidence counting between
the two APDs is performed by a National Instruments counting
card with a timing resolution of 25 ns.

062101-2



TOMOGRAPHY OF THE QUANTUM STATE OF PHOTONS . . . PHYSICAL REVIEW A 84, 062101 (2011)

355nm laser

SLM A

SLM B

NPBS

Type I BBO

L1

L3

L2

L2

L3

SF

SF

SMF

SMF

L4

L4

FIG. 1. (Color online) Experimental setup. L1 = 300 mm, L2 =
750 mm, L3 = 1000 mm, L4 = 3.2 mm. SLM, spatial light modulator;
NPBS, nonpolarizing beam splitter; SF, 710 ± 5-nm spectral filter;
SMF, single-mode fiber.

We take the approach of Ref. [7] by measuring an over-
complete set of modes. The range of the signal and idler modes
includes all the pure OAM states and all the pure superposition
states for all �1 < �2; see Eqs. (6) and (7). The phase α between
the modes for the superposition states takes on the values
0,π/2,π , and 3π/2. The number of possibilities where �1 < �2

is equal to the binomial coefficient ( d

2 ) so that the total number
of measurement states for the signal or idler mode is

N = 4

(
d

2

)
+ d. (10)

We measure the coincidence count rates for every combination
of these states for both the signal and idler photons, thus
resulting in a total number of measurements of N2. This
number increases very quickly with dimension, requiring
225 measurements for d = 3 and 14 400 measurements for
d = 8. For the integration time of 10 s that was used in our
experiment, these measurements take approximately 1 and
40 h, respectively.

The measured coincidence count rates are then normalized
by dividing all points by the sum of the coincidence counts
for the pure OAM states. This converts the coincidence count
rates to probabilities so that we can construct a density matrix
by minimizing the Chi-square quantity [3,4,11,29],

χ2 =
N2∑
i=1

(
p

(M)
i − p

(P )
i

)2

p
(P )
i

. (11)

Here, p(M)
i are the measured probabilities from the experiment,

and p
(P )
i are the predicted probabilities calculated from

the guessed density matrix ρd , together with the known
measurement states A; see Eq. (3).

The reconstruction of a density matrix as given by Eq. (9)
does not necessarily have positive eigenvalues and can
therefore represent a nonphysical quantum state. Due to the
presence of experimental noise, it is in fact likely that such
a case occurs. We therefore take an approach to the quantum
state reconstruction which ensures that our state has all the
required properties.

In order to construct the guessed density matrix ρd , we
first construct a matrix G from a linear combination of the
identity matrix and Gell-Mann matrices for d2 dimensions. As

these matrices form a basis for any matrix in d2 dimensions,
we ensure a minimum number of coefficients required in the
minimization process. The guessed density matrix is then
constructed using the following equation, which ensures that
all the eigenvalues of ρd are positive,

ρd = G†G

Tr(G†G)
. (12)

Thus the density matrix is, by construction, Hermitian and
positive semidefinite with unit trace [5]. By choosing the
appropriate coefficients of the Gell-Mann matrices, we can
minimize χ2, thus producing the closest physical density ma-
trix that represents the high-dimensionally entangled quantum
state.

IV. RESULTS AND DISCUSSION

We reconstructed the density matrix of the entangled
quantum states for dimensions ranging from d = 2 to d = 8.
The probabilities measured for d = 5 are shown in Fig. 2,
and reconstructed density matrices for even dimensions are
shown in Fig. 3. In each case, the eigenvector with the
highest eigenvalue corresponds very closely to the appropriate
entangled state given in Eq. (8). The imaginary components

FIG. 2. (Color online) (a) The complete set of measured proba-
bilities for dimension 5. (b) The pure OAM states. (c) A sample of
the superposition states. Here, αi denotes the phase difference in the
idler arm, from Eq. (7), and αs denotes the same in the signal arm.
The OAM states separated by a comma denote �1,�2 as in Eq. (7),
while the single states denote � as in Eq. (6).
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FIG. 3. (Color online) The density matrices for even dimensions
2–8. The axes for dimension 2 are labeled, and the higher dimensions
follow the same convention. For example, the labels for the d =
4 case would read 〈2,2|,〈2,1|,〈2,−1|, . . . and |−2, −2〉,|−2, −1〉,
|−2,1〉, etc., where we use the convention |�s,�i〉 to be equivalent to
|�〉s |�〉i .

of the density matrices arise because of coefficients in the
entangled states that have a small but measurable phase shift
between them. This phase shift occurs because some modes
have a larger Gouy phase than others. In our experiment, this
phase is detected because the facets of the optical fibers that
detect the signal and idler modes may not be in the same
optical plane and thus do not image the exact same plane of
the nonlinear crystal.
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FIG. 4. (Color online) (a) Linear entropy and (b) fidelity as a
function of dimension. The error for both of these measurements
is ±0.01, which is too small to be seen clearly on the graphs. In
each case, the squares represent the measured data, while the circles
represent the threshold states in Eq. (13). The shaded area represents
the set of states that will not violate the appropriate high-dimensional
Bell inequality.

The density matrix completely characterizes the quantum
state; thus once it has been determined, it is simple to make
predictions with regards to quantum information protocols. For
example, it is possible to determine the degree of entanglement
and test whether the states reach the criteria required for
violation of the generalized Bell inequalities [16,18].

The linear entropy S = 1 − Tr(ρ2
d ) is a measure of the

purity of the reconstructed state [7]. A pure state has a
linear entropy of zero [11]. We find the linear entropy is
low for lower dimensions (S2 = 0.05 ± 0.01), indicating close
to pure states. The linear entropy increases with dimension
(S8 = 0.50 ± 0.01), indicating increasingly mixed states [see
Fig. 4(a)]. The fidelity is a measure of how close the
reconstructed state is to a chosen state and is given by
F = [Tr(

√√
ρT ρd

√
ρT )]2, where ρT is the target density

matrix [30]. A perfectly entangled state will have a fidelity
of unity with the maximally entangled state in Eq. (8). For low
dimensions, we find good fidelity F2 = 0.96 ± 0.01; however,
the fidelity decreases with dimension and becomes as low as
F8 = 0.64 ± 0.01 [see Fig. 4(b)]. The average error for both
the entropy and the fidelity is ±0.01, which is calculated by
generating additional data sets by adding

√
Ci fluctuations to

the measured coincidence counts Ci and then repeating the
calculations described above.

The generalized Bell inequalities [16,18] test whether or
not the observed correlations, which are predicted by quantum
mechanics, can be explained by local hidden variable theories.
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The quantum state at the threshold of the high-dimensional
Bell inequality can be denoted as [16]

ρB = pmin
d |ψ〉〈ψ | + (

1 − pmin
d

) I

d2
. (13)

Here, I denotes the identity matrix of dimension d2, and pmin
d

is the probability above which the Bell inequality is violated.
The linear entropy and fidelity of the state ρB for dimensions
d = 2 through d = 8 are shown in Figs. 4(a) and 4(b). A state
with a linear entropy below that of ρB or a fidelity above that
of ρB will violate the high-dimensional Bell inequality, and all
of our measured states satisfy these conditions.

In the simplest case, the quantum state produced by the
parametric down-conversion process is pure [26,27]. Thus the
increase in linear entropy with dimension is likely due to errors
in the coincidence count rates, which are unavoidable in the
detection process. As the required number of measurements
increases significantly with the dimension size, so does the
possibility for measurement error. The precise origin of the
unwanted counts is not clear, although it is recognized that
these can arise from accidental coincidences and alignment
errors, leading to cross-talk between the modes. Another
potential source of error is walk-off, which can lead to spatial
distortions of the pump. As far as the fidelity is concerned,
since we compare our measured state to the maximally
entangled state of Eq. (8) with c� = 1/

√
d, we would expect

the measured decrease due to the finite number of entangled
modes, which is set by the spiral bandwidth.

The accidental count rate mentioned above can be predicted
by taking the product of the single-channel count rates and the
coincidence time window. This was less than one count per
second for all coincidence measurements. If these predicted
accidentals are subtracted from the measured counts, one
obtains a more accurate prediction of those that arise solely
from the entangled photon pairs. As one would anticipate,
repeating the calculations of the density matrices with the
background-subtracted data gives rise to quantum states that

are purer and have higher fidelities. On average, the fidelity
of the background-subtracted data is ≈2% higher than that
of the recorded experimental data, while the linear entropy is
≈12% lower. For example, for the background-subtracted data,
S2 = 0.01 and F2 = 0.98, while S8 = 0.42 and F8 = 0.67.

V. CONCLUSIONS

We have reported the tomographic reconstruction of the
high-dimensional quantum states of photon pairs entangled in
the orbital angular momentum basis. We have obtained the
density matrix of two entangled qudits in dimensions from
d = 2 up to d = 8. Recording the density matrix of entangled
quantum states in higher dimensions is possible, although
the required measurement times do not scale favorably with
dimension size. Characterizing the states leads to fidelities
ranging from F2 = 0.96 ± 0.01 to F8 = 0.64 ± 0.01 when
compared with the maximally entangled state and linear
entropies ranging from S2 = 0.05 ± 0.01 to S8 = 0.50 ± 0.01.
These measurements and subsequent calculations are impor-
tant for determining the upper bound on the dimension of an
OAM space that is usable for secure quantum communications.
It is measurement error that contributes to this increase in
entropy and decrease in fidelity. Realizing the extent to which
such measurement errors corrupt the state is an important con-
sideration when utilizing such high-dimensionally entangled
states in other quantum information protocols.
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